AQA Chemistry GCSE Student bump up your grade

C7.3

Name	Class	Date

Reaction profiles

Specification references

C5.1.2 Reaction profiles

Aims

This activity will help you to develop your understanding of reaction profiles, so that you can achieve the highest grade possible in your GCSE examinations.

Learning outcomes

After completing this activity, you should be able to:

- explain what reaction profiles show
- identify the activation energy on a reaction profile.

Task

Answer the questions below.

Methane burns in oxygen to make carbon dioxide and wa	1	and wate	ater
---	---	----------	------

methane + oxygen → carbon dioxide + water

For most reactions to happen, the reactant molecules have to collide. But collisions between them might not always cause a reaction.

(Hint: think about why there might not always be much damage when two

Why might a collision between a methane molecule and an oxygen molecule *not* always result in a reaction?

cars 'crash'.)	

(2 marks)

AQA Chemistry **GCSE** Student bump up your grade

C7.3

Name...... Date..... Date.....

2 In a chemical reaction, the amount of energy the particles have changes as the reaction goes on.

Look at Figure 1.

Figure 1

What happens to the amount of energy contained in the particles as products are formed from the reactants?

	Fir	st:	
	Th	ien:	(2 marks)
3	Su	iggest why the amount of energy in the reactants first increases.	
			(1 mark)
4		ne amount of energy needed to start a reaction is called the activation energy. Faw an arrow on Figure 1 to show the activation energy.	(1 mark)
5	а	For the reaction overall, state whether energy is transferred from the surroundings or is transferred to the surroundings.	
			(1 mark)
	b	Explain how you can tell.	
			(1 mark)